ارزیابی فنی- اقتصادی راهکارهای پیشنهادی اصلاح الگوی مصرف آب در نیروگاه طرشت

نوع مقاله : مقاله پژوهشی

نویسندگان

استادیار شیمی تجزیه، پژوهشگاه نیرو

10.22034/ijche.2023.369608.1252

چکیده

میانگین مصرف آب خام در نیروگاه طرشت بهمیزان 2800m3/day  چشم‌گیر است؛ از این رو ارائۀ راه‌کارهای اثربخش در راستای اصلاح الگوی مصرف و جلوگیری از اتلاف آب ضروری است. پس از بررسی­های فنی، راه‌کارهای مؤثر از قبیل بازچرخانی زهکش تمیز1 دمنده 2 دیگ‌بخار، زهکش شست‌وشوی صافی­های رزینی3، تصفیه و بازچرخانی دمنده برج­های خنک­کننده و غیره مطالعه شد. باتوجهبه حجم و کیفیت پساب تولیدی نیروگاه، راه‌کار بازچرخانی زهکش­های تمیز بهعنوان مؤثرترین روش انتخاب شد. در بین روش­های مختلف اجرایی راهکار بازچرخانی زهکش­های تمیز، دو روش استخر فواره­ای و مبدل حرارتی بهعنوان روش‌های مؤثرتر ازنظر فنی- اقتصادی بررسی شد. مطالعات اقتصادی نشان داد که برای تهیۀ تجهیزات و اجرای راهکار بازچرخانی  m3/h8 دمنده دیگ‌بخار، بهمیزان 1,070,000 هزار تومان برای روش استخر فواره­ای و1,425,630 هزار تومان برای روش مبدل حرارتی هزینه لازم است که روش استخر فواره­ای حدود 25% کمتر هزینه دارد. هم‌چنین بازگرداندن دمنده دیگ‌بخار (200m3/day ) به آب ورودی با روش فواره­ای (راندمان عملکردی 75%) منجربه کاهش 3/5% در مصرف آب و استفاده از روش مبدل حرارتی (راندمان عملکردی 95%) منجربه کاهش حدود 8/6% مصرف آب ورودی می‌شود. در کنار نتایج اقتصادی، مطالعات فنی نشان داد که روش استخر فواره­ای بهدلیل سادگی عمل، امکان حذف آهن و هیدرازین برتری‌های بیشتری از سایر روش­های بازچرخانی دمنده دیگ‌بخار دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Technical-Economic Evaluation of the Proposed Solutions to Modify the Pattern of Water Consumption in Tarasht Power Plant

نویسندگان [English]

  • M. Ghahraman Afshar
  • M. Esmaeilpour
  • Morteza Faghihi
Assistant Professor of Analytical Chemistry, Niroo Research Institute (NRI)
چکیده [English]

The average consumption of raw water in Tarasht power plant is 2800 m3/day, which is considerable, and therefore it is necessary to provide effective solutions in order to improve the consumption pattern and prevent water wastage. After technical investigations, effective solutions such as recirculation of clean drains of boilers, drains of resin filters backwash, purification and recirculation of cooling tower drains, etc. were studied. Considering the volume and quality of the produced effluent of the power plant, the solution of recirculating clean drains was chosen as the most effective method. Among the various implementation methods of clean drain recycling, two methods of fountain pool and heat exchanger were investigated as two more effective technical and economic methods. Economic studies showed that for the provision of equipment and the implementation of 8 m3/h recycling solution of boiler blowdown, it is necessary to spend 1,070,000,000 Tomans for the fountain pool method and 1,425,630,000 Tomans for the heat exchanger method, that the fountain pool method needs about 25% less cost. Also, recirculation of boiler sludge (200 m3/day) to the raw water with the fountain method (functional efficiency 75%) leads to a 5.3% reduction in water consumption and the use of the heat exchanger method (functional efficiency 95%) leads to a reduction of about 6.8% of input raw water. In addition to the economic results, technical studies showed that the fountain pool method has more advantages than other methods of recirculating boilers due to the simplicity of operation, the possibility of removing iron and hydrazine.

کلیدواژه‌ها [English]

  • Tarasht power Plant
  • Boiler Blowdown
  • Cooling Tower Blowdown
  • Optimization of Cooling Towers
  • Heat Exchanger
  • Fountain Pool
  • Technical-Economic Evaluation
[1]        Larsen, S. T. (2004). Lack of freshwater throughout the world. Part of Water is Life. University of Wisconsin-Eau Claire, USA.
[2]        Pira, Ch., & Hasani, A. (2018). Inventing and investigating a new method in the extraction and collection of rainwater. Iranian Journal of Rainwater Catchment Systems, 5(4): 1-14, In persian.
[3]        Jenab, M., & Nazari, B. (2018). Estimating of Wheat Yield and Water Productivity Gap Using GYGA Protocol in Qazvin Province. Research in Water of Agriculture, 32(1): 41-54, In Persian.
[4]        Mariolakos, I. (2007). Water resources management in the framework of sustainable development. Desalination, 213(1-3):  147-151.
[5]        Khanjani, M., & Rezaie, H. (2020). A Review of the Use of Unconventional Waters in the Aquaculture Industry. Journal of Water and Wastewater Science and Engineering, 5(1): 4-13, In Persian.
[6]        Sheikh, V. (2019). Role of governments in expansion of household rainwater harvesting systems: introduction to experiences of some countries. Journal of Rainwater Catchment Systems, 7(3): 46-49, In Persian.
[7]        Mohajeri, Z., & Pakravan, M. (2021). Unconventional Hydrocarbon Resources: Environmental Impact and Future Challenges. Sustainiblity, Development and Environment, 2(2): 1-19, In Persian.
[8]        PoorMohammadi, S., Dastoorani, H., & Rahimian, M. (2008). Introducing the desalination method to use unconventional waters in times of drought. Regional Conference on Drought, Consequences and Solutions to Deal with It, In Persian.
[9]        Salehi, A. (2020). Strategic approach to the use of unconventional waters in agricultural lands South of Tehran. The System of Agricultural Scientific Management Publications, 5(5): 23-29, In Persian.
[10]      Rezaie, N., & Sarafzadeh, A. (2020). A Review of Greywater Characteristics and Treatment Methods. Journal of Environmental and Technology Science, 21(12): 81-89, In Persian.
[11]      Nabati, J. (2017). Introduction on management solution in the Salty condition. The First Conference on Salty Condition, In Persian.
[12]      Sarafzadeh, S., & Asgharnejad, H. (2019). Studying the Process of Sugar Extraction from Sugarcane and Proposing Solutions to Reduce Water Consumption through Water Reuse. Journal of Water and Waste Water Science and Technology, 4(3): 50-60, In Persian.
[13]      Sarafzadeh, S. (2018). Approaches to decrease water consumption in process industries with an emphasis on the oil refining industry. FrayandNo, 12(60): 85-66, In Persian.
[14]      Sarafzadeh, S., & Sarhadi, M. (2021). Studying Water Network Optimization Plans in a Process Industry to Reduce Water Consumption: Comparing Direct Reuse and Regeneration-Reuse Approaches. Nashrieh Shimi va Mohandesi Shimi Iran, 40(2): 247-257,In Persian.
[15]      Francisco, F. S., Bavar, M., Pessoa, F. L., Queiroz, E. M., Asgharnejad, H., & Sarrafzadeh, M.-H. (2022). Developing Water Source Diagram method for effective utilization of regeneration unit in water networks: Multiple-contaminant problems. Journal of Water Process Engineering, 47: 102758.
[16]      Torabian, A., Hasani, A., & Babaie, H. (2005). Treatment of waste water for the chemical washing of thermal power plant of Iran. Journal of Environmental Science and Technology, 6(2): 45-55, In Persian.
[17]      Heydari, K., & Kasraee Nezhad, M. (2022). Investigation on Aspects of the Clean Development Mechanism (CDM) and its Position in Iran’s Electricity Industry. Human & Environment, 20(1): 19-36.
[18]      Baraie, I., Farzadkia, M., & Jafarzadeh, N. (1389). The investigation of loading organic materials on the performance of water tretment plant of Abadan. Journal of Environmental Science and Technology, 2(12): 79-88, In Persian.
[19]      Unesco, W. W. A. P. (2012). Managing water under uncertainty and risk: Unesco.
[2]        Yousefinejad, M., Larijani, M., Shobeiri, M., & Rezaei, M. (2022). Designing a Model of Virtual Water Education in the Agricultural Sector with the Approach of Resistance Economy and Sustainable Development. Sustainability, Development and Environment, 3(2): 87-112, In Persian.
[21]      Shakeri, H., & Nazif, S. (2015). Development of a Risk-based Algorithm for Selection of the Best Wastewater Reuse Alternative. Journal of Water Recycling, 2(2): 103-118, In Persian.
[22]      Schultz, T. (2008). Water Reuse and Conservation in the CPI. Chemical Engineering, 115(9):  44-56.
[23]      Guglielmi, G., Saroj, D. P., Chiarani, D., & Andreottola, G. (2007). Sub-critical fouling in a membrane bioreactor for municipal wastewater treatment: experimental investigation and mathematical modelling. Water research, 41(17):  3903-3914.
[24]      Bavar, M., Sarrafzadeh, M. -H., Asgharnejad, H., & Norouzi-Firouz, H. (2018). Water management methods in food industry: Corn refinery as a case study. Journal of Food Engineering, 238:  78-84.
[25]      Frenken, K. (2012). Irrigation in Southern and Eastern Asia in figures: AQUASTAT Survey-2011. Water Reports, 37(2): 45-53.
[26]      Panjeshahi, M., Ataei, A., Gharaie, M., & Parand, R. (2009). Optimum design of cooling water systems for energy and water conservation. Chemical Engineering Research and Design, 87(2): 200-209.
[27]      Kahani, Z., & Farokhi, M. (2020). Thermal Evaluation of Using Thermosyphon Heat Exchangers Instead of Ljungstrom in Boiler of Mashhad Steam Power Plant. Nashrieh Shimi va Mohandesi Shimi Iran, 39(2): 273-289, In Persian.
[28]      Mohammadpoor, A., & Shafiei, M. (2020). Effect of Leakage Modification and Cooling Flow Rate Increase of Water-Cooled Condenser on NVD System Performance Equipped with Vacuum Tube Collectors. Journal of Environmental Science and Technology, 22(8): 389-404, In Persian.
[29]      Seifoori, S., & Ameri, M. (2012). Analysis of Integrated Refrigeration Systems with Microturbine and Absorption Chiller. Scientific Journal of Energy Engineering and Managemant, 2(3): 46-53, In Persian.