کاربرد نانوجاذب کربن متخلخل مغناطیسی مشتق شده از پیرولیز r-MIL-88 مغناطیسی در استخراج و اندازه‌گیری هیدروکربن‌های چندحلقه‌ای آروماتیک در نمونه‌های محیط زیستی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری شیمی، گروه شیمی، دانشکدۀ علوم، دانشگاه آزاد اسلامی واحد تبریز، تبریز،‌ ایران

2 دانشیار شیمی تجزیه، گروه شیمی، دانشکدۀ علوم، دانشگاه آزاد اسلامی واحد تبریز، تبریز،‌ ایران

3 استادیار شیمی تجزیه، گروه پژوهشی شیمی و فرایند، پژوهشگاه نیرو، تهران، ایران

4 استاد شیمی تجزیه، گروه شیمی، دانشکدۀ علوم، دانشگاه ارومیه، ارومیه،‌ ایران

5 استادیار شیمی، گروه شیمی، دانشکدۀ علوم، دانشگاه آزاد اسلامی واحد تبریز، تبریز،‌ ایران

10.22034/ijche.2023.378709.1270

چکیده

در پژوهش حاضر، روشی ساده و سریع برای استخراج هم­زمان هیدروکربن­های آروماتیک چندحلقه‌ای (۹،۱۰- دی‌متیل آنتراسن، دی‌بنزوتیوفن) با استفاده از نانوجاذب کربنی مغناطیسی به‌دست آمده از چارچوب فلز- آلی r-MMIL-88 به­طور موفقیت­آمیزی ارائه و به‌کار گرفته شد. در ادامه آنالیت­های تغلیظ‌شده با روش کروماتوگرافی مایع با عملکرد بالا با دتکتور فرابنفش (HPLC-UV) اندازه‌گیری شدند. جاذب سنتزشده با روش‌های مختلف شامل FT-IR, XRD, VSM و TEM شناسایی شد. سپس روش طراحی مختلط مرکزی (CCD) به‌منظور شناسایی و بهینه‌سازی مشخصه‌­های مؤثر بر استخراج ترکیبات ذکرشده استفاده شد. تحت شرایط بهینه، حد تشخیص­ها و محدودۀ خطی منحنی کالیبراسیون به‌ترتیب در محدودۀ 0/1-0/05 و 500-0/25 میگروگرم بر لیتر به‌دست آمد. انحراف استاندارد نسبی روش به‌عنوان معیاری از دقت کمتر از 7/9 درصد برای یک روز کاری و 5/12 درصد برای چند روز کاری به‌دست آمد. درنهایت جاذب مورد نظر به‌منظور استخراج و تعیین مقدار سریع ترکیبات مورد نظر در نمونه­های آب چاه، آب دریای خزر و خلیج فارس استفاده شد. انحراف استاندارد در محدودۀ 10-6-6/7 درصد و درصد بازیابی نسبی در محدودۀ 94-15 درصد به‌دست آمد. نتایج حاصل از آنالیز نمونه­های حقیقی نشان داد که این روش می‌تواند با موفقیت برای استخراج و پیش‌تغلیظ ترکیبات مورد نظر در نمونه‌های با بافت پیچیده استفاده شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of Magnetic Porous Carbon Nanosorbent Derived from the Pyrolysis of Magnetic r-MIL-88 for the Extraction and Determination of Polycyclic Aromatic Hydrocarbons in Environmental Samples

نویسندگان [English]

  • N. Heydari 1
  • E. Ghorbani-Kalhor 2
  • A. A. Asgharinezhad 3
  • M. Bahram 4
  • M. T. Vardini 5
1 Ph. D. Student of Chemistry, Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
2 Associate Professor of Analytical Chemistry, Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
3 Assistant Professor of Analytical Chemistry, Chemistry and Process Research Department, Niroo Research Institute (NRI), Tehran, Iran
4 Professor of Analytical Chemistry, Department of Chemistry, Faculty of Science, Urmia University, Urmia, Iran
5 Assistant Professorof Chemistry, Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
چکیده [English]

In this research, the MPC obtained from the pyrolysis of r-MMIL-88 was applied for preconcentration of two homo and hetero-polycyclic aromatic hydrocarbons. The target analytes were determined by high-performance liquid chromatography with ultra violet detection system (HPLC-UV). Various characterization techniques such as FT-IR spectroscopy, TEM, VSM, and XRD were employed. After that, central composite design (CCD) method was utilized to explore and optimize affecting factors. Applicability of the MPC was explored using dibenzothiophene and 9,10-dimethylanthracene, as the model analytes. Under the optimum condition, LODs and linear ranges were achieved in the domain of 0.05-0.1 µg L-1 and 0.25-500 µg L-1, respectively. Repeatability of the method as RSDs was evaluated which was <7.8% (within-day, n = 5) and <12.5% (between-day, n = 3). Ultimately, the method was applied to analyze well and seawater samples and satisfactory results (RSDs%, 6.7-10.6%; relative recoveries, 94-105%) were obtained. The results of the analysis of real samples showed that this technique can be successfully used to extract and preconcentrate the desired compounds in samples with complex texture.

کلیدواژه‌ها [English]

  • Magnetic Porous Carbon
  • Polycyclic Aromatic Hydrocarbons
  • Preconcentration
  • Metal-Organic Framework
  • Magnetic Solid Phase Extraction
  • Environmental Samples
[1]        Chisvert, A., Cárdenas, S., & Lucena, R. (2019). Dispersive micro-solid phase extraction. TrAC Trends in Analytical Chemistry 112: 226-233.
[2]        Wei, C., Han, Y., Bandowe, B. A. M., Cao, J., Huang, R. J., Ni, H., Tian, J., & Wilcke, W. (2015). Occurrence, gas/particle partitioning and carcinogenic risk of polycyclic aromatic hydrocarbons and their oxygen and nitrogen containing derivatives in Xi'an, central China. Science of the Total environment, 505: 814-822.
[3]        Stefanova, M., Marinov, S. P., Mastral, A. M., Callén, M. S., & Garcı́, T. (2002). Emission of oxygen, Sulphur and nitrogen containing heterocyclic polyaromatic compounds from lignite combustion. Fuel Process Technology, 77-78: 89-94.
[4]        Rocío-Bautista, P., González-Hernández, P., Pino, V., Pasán, J., & Afonso, A. M. , (2017). Metal-organic frameworks as novel sorbents in dispersive-based microextraction approaches. TrAC Trends in Analytical Chemistry, 90: 114-134
[5]        Qin, Z. (2010). Thin film microextraction. PhD Thesis, University of Waterloo, Ontario, Canada.
[6]        Berrueta, L.A., Gallo, B., & Vicente, F. (1995). A Review of Solid Phase Extraction: Basic Principles and New Developments. Chromatographia, 40: 474-483.
[7]        Wierucka, M., & Biziuk, M. (2014). Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples. TrAC Trends in Analytical Chemistry, 59: 50-58.
[8]        Kraševec, I., & Prosen, H. (2018). Solid-Phase Extraction of Polar Benzotriazoles as Environmental Pollutants: A Review. Molecules, 23: 2501-2515.
[9]        Poole, C. F., (2003). New trends in solid-phase extraction. TrAC Trends in Analytical Chemistry, 22: 362-373.
[10]      Herrero-Latorre, C., Barciela-García, J., García-Martín, S., Peña-Crecente, R. M., & Otárola-Jiménez, J., (2015). Magnetic solid-phase extraction using carbon nanotubes as sorbents: A review. Analytica Chimica Acta, 892: 10-26.
[11]      Shi, Y., Zhang, J., He, J., Liu, D., Meng, X., Huang, T., & He, H. (2019). A method of detecting two tumor markers (p-hydroxybenzoic acid and p-cresol) in human urine using a porous magnetic -cyclodextrine polymer as solid phase extractant, an alternative for early gastric cancer diagnosis. Talanta, 191: 133-140.
[12]      Bagheri, A.R., Arabi, M., Ghaedi, M., Ostovan, A., Wang, X., Li, J., & Chen, L. (2019). Dummy molecularly imprinted polymers based on a green synthesis strategy for magnetic solid-phase extraction of acrylamide in food samples. Talanta, 195: 390-400.
[13]      Taghavi, R., Rostamnia, S., Farajzadeh, M., Karimi-Maleh, H., Wang, J., Kim, D., Jang, H.W., Luque, R., Varma, R. S., & Shokouhimehr, M. (2022). Magnetite Metal–Organic Frameworks: Applications in Environmental Remediation of Heavy Metals, Organic Contaminants, and Other Pollutants. Inorganic Chemistry. 61: 15747-15783.
[14]      Narimani-Sabegh, S., & Noroozian, E. (2019). Magnetic solid-phase extraction with copper ferrite nanoparticles for the separation and preconcentration of ultra-trace amounts of tellurium (IV) ion in aqueous samples. Journal of Iranian Chemical Society, 16: 73-81.
[15]      Lu, A. H., Li, W. C., Matoussevitch, N., Spliethoff, B., Bönnemann, H., & Schüth, F. (2005). Highly stable carbon-protected cobalt nanoparticles and graphite shells. Chemical Communications, 1: 98-100.
[16]      Behbahani, M., Najafi, M., Amini, M. M., Sadeghi, O., Bagheri, A., & Salarian, M. (2013). Dithizone-modified nanoporous fructose as a novel sorbent for solid-phase extraction of ultra-trace levels of heavy metals. Microchimica Acta, 180: 911-920.
[17]      Behbahani, M., Abolhasani, J., Amini, M. M., Sadeghi, O., Omidi, F., Bagheri, A., & Salarian, M. (2015). Application of mercapto ordered carbohydrate-derived porous carbons for trace detection of cadmium and copper ions in agricultural products. Food Chemistry, 173: 1207-1212.
[18]      Behbahani, M., Najafi, F., Amini, M.M., Sadeghi, O., Bagheri, A., & Hassanlou, P. G. (2014). Solid phase extraction using nanoporous MCM-41 modified with 3,4-dihydroxybenzaldehyde for simultaneous preconcentration and removal of gold (III), palladium (II), copper (II) and silver (I). Journal of Industrial and Engineering Chemistry, 20: 2248-2255.
[19]      Asgharinezhad, A. A., Ebrahimzadeh, H., Rezvani, M., Shekari, N., & Loni, M. (2014). A novel 4-(2-pyridylazo) resorcinol functionalised magnetic nanosorbent for selective extraction of Cu (II) and Pb (II) ions from food and water samples. Food Additives & Contaminants: Part A, 31: 1196-204.
[20]      Wang, L., Zhang, Y., Li, X., Xie, Y., He, J., Yu, J., & Song, Y. (2015). The MIL-88A-derived Fe3O4-carbon hierarchical nanocomposites for electrochemical sensing. Scientific Reports, 5: 1-2.
[21]      Jalilian, N., Ebrahimzadeh, H., & Asgharinezhad, A. A. (2018). Determination of acidic, basic and amphoteric drugs in biological fluids and wastewater after their simultaneous dispersive micro-solid phase extraction using multiwalled carbon nanotubes/magnetite nanoparticles@poly(2-aminopyrimidine) composite. Microchemical Journal, 143: 337-349.
[22]      Asgharinezhad, A. A., Esmaeilpour, M., & Siavoshani, A. Y. (2022). Extraction and preconcentration of Ni (ii), Pb (ii), and Cd (ii) ions using a nanocomposite of the type Fe3O4@SiO2@ polypyrrole-polyaniline. RSC Advances, 12: 19108-19114.
[23]      Asgharinezhad, & A. A., Ebrahimzadeh, H. (2020). A novel polymer coated magnetic porous carbon nanocomposite derived from a metal-organic framework for multi-target environmental pollutants preconcentration. Journal of Chromatography A, 1634: 461664-461673.
[24]      Mehdinia, A., Mohammadi, A. A., Davarani, S. S. H., & Banitaba, M. H. (2011). Application of self-assembled monolayers in the preparation of solid-phase microextraction coatings. Chromatographia, 74: 421-427.
[25]      Meyer, S., Cartellieri, S., & Steinhart, H. (1999). Simultaneous determination of PAHs, hetero-PAHs (N, S, O), and their degradation products in creosote-contaminated soils. Method development, validation, and application to hazardous waste sites. Analytical Chemistry, 71: 4023-4029.
[26]      Banitaba, M.H., Davarani, S. S. H., & Movahed, S. K. (2014). Comparison of direct, headspace and headspace cold fiber modes in solid phase microextraction of polycyclic aromatic hydrocarbons by a new coating based on poly (3, 4-ethylenedioxythiophene)/graphene oxide composite. Journal of Chromatography A, 1325: 23-30.
[27]      Asgharinezhad, A. A., & Ebrahimzadeh, H. (2021). Magnetic porous carbon nanocomposite derived from cobalt based-metal-organic framework for extraction and determination of homo and hetero-polycyclic aromatic hydrocarbons. Talanta, 233:122526-122532.