بررسی تأثیر نوع حلال بر استخراج کلروفیل وکاروتنوئید از ریزجلبک خشک و مرطوب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی شیمی، دانشگاه صنعتی سهند

2 دانشیار مهندسی شیمی، دانشگاه صنعتی سهند

10.22034/ijche.2023.369180.1251

چکیده

کلروفیل‌ و کاروتنوئیدها را می‌توان با استفاده از حلال‌های مختلف از ریزجلبک‌ها استخراج کرد. در این تحقیق برای نخستین بار، بازده استخراج این رنگدانه‌ها از ریزجلبک مختلط در شرایط مرطوب و خشک بررسی و مقایسه شد. بازده استخراج کلروفیل a، b و کاروتنوئید با استفاده از حلال‌ استون (بدون همزدگی) از جلبک مرطوب به‌ترتیب برابر 21/83%، 12/78%، 01/66% و از جلبک خشک به‌ترتیب برابر با 34/61%، 19/57% و 27/53% است. برای انتخاب حلال مناسب در استخراج رنگدانه‌ها از استون، اتانول، متانول، دیمیتل اتر و سورفکتانت‌های غیریونی توئین (20% و 85%) استفاده شد. به‌دلیل شرایط سخت نگهداری جلبک مرطوب، از جلبک خشک در این آزمایشها استفاده شد. نتایج نشان میدهد که بالاترین بازده استخراج کلروفیل a، b و کاروتنوئید با استفاده از توئین 85% در شرایط بدون همزدگی در روز دهم بهترتیب برابر با 70/91%، 12/87%، 90/79% است. نیز، بازده استخراج با استفاده از حلال متانول بعد از گذشت 10ساعت برابر70/82%، 12/65% و90/62% به‌دست آمد. برای کاهش مدت زمان استخراج با استفاده از توئین 85%، از همزدگی استفاده شد. براساس نتایج، استفاده از همزدگی، باعث افزایش سرعت استخراج رنگدانه‌ها می‌شود، به‌طوریکه در مدت 50 دقیقه، بازده استخراج به 98% رسید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Effect of Solvent Type on Chlorophyll and Carotenoid Extraction from Dry and Wet Microalgae

نویسندگان [English]

  • L. Nedaei 1
  • H. Shokrkar 2
1 - Ph. D. Student of Chemical Engineering, Sahand University of Technology
2 Associate Professor of Chemical Engineering, Sahand University of Technology
چکیده [English]

Chlorophyll and carotenoids can be extracted from microalgae using different solvents. In this study, for the first time, the extraction yield of pigments from mixed microalgae was compared in wet and dry conditions. The extraction yield of chlorophyll a, b and carotenoid using acetone solvent (without stirring) from wet algae equal 21.83%, 78.12%, and 66.01% respectively and from dry algae equals 61.34%,57.19%, and 53.27%, respectively. Then, to select the suitable solvent, acetone, ethanol, methanol, dimethyl ether, and tween (20% and 85% ) as non-ionic surfactants were used. Due to the difficult storage conditions of wet algae, dry algae was used in these experiments. The results show that the highest extraction yield of chlorophyll a, b, and carotenoid using tween (85%) without stirring on the tenth day is 91.70%, 87.12%, and 79.9% respectively. Also, the extraction yield with methanol solvent after 10 hours was 82.70%, 65.12%, and 62.90%. To reduce the extraction time using tween (85%), stirring was used. According to the results, the use of stirring increases the extraction rate of pigments, so that the extraction yield reached 98% within 50 min.

کلیدواژه‌ها [English]

  • Mixed Microalgae
  • Solvent
  • Extraction
  • Chlorophyll
  • Carotenoid

 

[1]        Ruiz-Domínguez, M. C., Vaquero, I., Obregón, V., de la Morena, B., Vílchez, C., & Vega, J. M. (2015). Lipid accumulation and antioxidant activity in the eukaryotic acidophilic microalga Coccomyxa sp.(strain onubensis) under nutrient starvation. Journal of applied phycology, 27, 1099-1108.
[2]        Marker, A. F. H. (1972). The use of acetone and methanol in the estimation of chlorophyll in the presence of phaeophytin. Freshwater Biology, 2(4), 361-385.
[3]        Nedaei, L., & Shokrkar, H. (2022). A Review on the Extraction of Chlorophyll and Carotenoids from Microalgae. Iranian Chemical Engineering Journal21(123), 45-58, [In Persian].
[4]        Jajic, I., Sarna, T., & Strzalka, K. (2015). Senescence, stress, and reactive oxygen species. Plants, 4(3), 393-411.
[5]        Mehta, P., Singh, D., Saxena, R., Rani, R., Gupta, R. P., Puri, S. K., & Mathur, A. S. (2018). High-value coproducts from algae—An innovational way to deal with advance algal industry. Waste to wealth, 343-363.
[6]        Shokrkar, H., & Keighobadi, A. (2021). Investigation of the Hydrodynamic Condition Effects and Mass Transfer Rate on Enzymatic Hydrolysis of Mixed Microalgae.
[7]        Shokrkar, H., & Nedaei, L. (2023). Chlorophyll and carotenoid extraction from mixed microalgae; experimental and kinetic study. Biomass Conversion and Biorefinery, 1-13.
[8]        Keshav, A. (2010). Thermal degradation of coriander leaves: kinetic modelling. International Journal of Chemical Sciences, 8(5), 321-323.
[9]        Pyle, D. J., Garcia, R. A., & Wen, Z. (2008). Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. Journal of Agricultural and Food Chemistry, 56(11), 3933-3939.
[10]      Sarkar, S., Manna, M. S., Bhowmick, T. K., & Gayen, K. (2020). Extraction of chlorophylls and carotenoids from dry and wet biomass of isolated Chlorella Thermophila: Optimization of process parameters and modelling by artificial neural network. Process Biochemistry, 96, 58-72.
[11]      Razi, N., Shamsaie Mehrgan, M., & Hosseini Shekarabi, S. P. (2020). A comparative study of different drying methods on some proximate composition and pigments of marine microalgae Isochrysis galbana. Aquaculture Sciences, 7(2), 12-20.
[12]      Hartmut, K., & Alan, R. W. (1983). Determinations of total carotenoids and chlorophylls b of leaf extracts in different solvents. Analysis, 4, 142-196.
[13]      Krishnan, R. Y., & Rajan, K. S. (2016). Microwave assisted extraction of flavonoids from Terminalia bellerica: Study of kinetics and thermodynamics. Separation and Purification Technology, 157, 169-178.
[14]      Bernaerts, T. M., Verstreken, H., Dejonghe, C., Gheysen, L., Foubert, I., Grauwet, T., & Van Loey, A. M. (2020). Cell disruption of Nannochloropsis sp. improves in vitro bioaccessibility of carotenoids and ω3-LC-PUFA. Journal of Functional Foods65, 103770.
[15]      Zhang, T. Y., Hu, H. Y., Wu, Y. H., Zhuang, L. L., Xu, X. Q., Wang, X. X., & Dao, G. H. (2016). Promising solutions to solve the bottlenecks in the large-scale cultivation of microalgae for biomass/bioenergy production. Renewable and Sustainable Energy Reviews, 60, 1602-1614.
[16]      Natarajan, R., Ang, W. M. R., Chen, X., Voigtmann, M., & Lau, R. (2014). Lipid releasing characteristics of microalgae species through continuous ultrasonication. Bioresource technology, 158, 7-11.
[17]      Zou, T. B., Jia, Q., Li, H. W., Wang, C. X., & Wu, H. F. (2013). Response surface methodology for ultrasound-assisted extraction of astaxanthin from Haematococcus pluvialis. Marine drugs, 11(5), 1644-1655.
[18]      Kong, W., Liu, N., Zhang, J., Yang, Q., Hua, S., Song, H., & Xia, C. (2014). Optimization of ultrasound-assisted extraction parameters of chlorophyll from Chlorella vulgaris residue after lipid separation using response surface methodology. Journal of food science and technology, 51, 2006-2013.
[19]      Jespersen, A. (1987). Measurements of chlorophyll a from phytoplankton using ethanol as extraction solvent. Arch. Hydrobiol., 109, 445-454.
[20]      Simon, D., & Helliwell, S. (1998). Extraction and quantification of chlorophyll a from freshwater green algae. Water research, 32(7), 2220-2223.
[21]      Sartory, D. P. (1985). The determination of algal chlorophyllous pigments by high performance liquid chromatography and spectrophotometry. Water Research, 19(5), 605-610.
[22]      Babadi, F. E., Boonnoun, P., Nootong, K., Powtongsook, S., Goto, M., & Shotipruk, A. (2020). Identification of carotenoids and chlorophylls from green algae Chlorococcum humicola and extraction by liquefied dimethyl ether. Food and bioproducts processing, 123, 296-303.
[23]      Wasmund, N., Topp, I., & Schories, D. (2006). Optimising the storage and extraction of chlorophyll samples. Oceanologia, 48(1).
[24]      Abaychi, J. K., & Riley, J. P. (1979). The determination of phytoplankton pigments by high-performance liquid chromatography. Analytica Chimica Acta, 107, 1-11.