مدل‌سازی انتشار ویروس کرونا با استفاده از روش زنجیره‌های مارکوف

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی شیمی، دانشکدۀ فنی و مهندسی، دانشگاه ولی عصر(عج) رفسنجان

2 استادیار مهندسی شیمی، دانشکدۀ فنی و مهندسی، دانشگاه ولی عصر(عج) رفسنجان

3 استادیار مهندسی معدن، پردیس مهندسی، دانشگاه بیرجند

چکیده

در سال­های اخیر بیماری کووید-19 بهعنوان یک بیماری مسری با قدرت انتشار بالا اثرات بسیار مخربی بر جوامع انسانی داشتهاست. از این رو، بررسی نحوۀ انتشار و انتقال آن ضرورت دارد. هدف از پژوهش حاضر، تخمین احتمال انتقال ویروس کرونا و پیش­بینی سرایت آن با استفاده از روش تصادفی زنجیره­های مارکوف است. برای این منظور به مدل‌سازی انتشار ویروس کرونا در کشورهای فرانسه، انگلستان، آلمان، ایران و نیجریه پرداخته شدهاست. باتوجهبه نتایج، بیشترین احتمال انتقال این ویروس مربوطبه کشور فرانسه است که با گذشت زمان بهسرعت کاهش یافتهاست. علاوهبر این، موارد ابتلای پیش­بینیشده در سال 2021 برای کشورهای انگلیس، آلمان و ایران بهترتیب بهاندازۀ 1.2، 1.8 و 0.7 درصد با مقادیر گزارششده، اختلاف دارد. این نتایج بیانگر کارایی مدل پیشنهادی در پیش­بینی تعداد افراد مبتلا به ویروس کروناست.


کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Energy and Exergy Analysis of Photovoltaic Thermal System (PV/T) With Water Flow

نویسندگان [English]

  • M. Rahimdel 1
  • M. M. Kamyabi 2
  • H. Eghbali 2
  • M. J. Rahimdel 3
1 M. Sc. Student of Chemical Engineering, Vali-e-Asr University of Rafsanjan
2 Assistant Professor of Chemical Engineering, Vali-e-Asr University of Rafsanjan
3 Assistant Professor of Mining Engineering, University of Birjand
چکیده [English]

In this work, the performance of a solar system, in more detail, the thermal photovoltaic system is investigated. Numerical study has been done through coding in MATLAB software and by simultaneously solving equations related to the electrical and thermal parts, which provides the possibility of performing various investigations on the system. It is noteworthy that the PV part of this code, which is entirely accurate, can also use independently for photovoltaic systems. Numerical study has three features: parametric study, and collector performance in one day and in one year. As the wind speed increases from zero to 14 m/s, the electrical efficiency increases by about 4%, the thermal efficiency decreases by about 22%, and the overall efficiency of the system decreases by 18%; Therefore, there is a possibility of drastic changes in the performance of the system with changes in wind speed. By increasing the amount of radiation from 350 to 1050 W/m2, the electrical, thermal and overall efficiency shows a 1% decrease, 16% increase and 14% increase, respectively. Assuming an increase in the ambient temperature from 5 to 60 oC, the electrical efficiency decreases by 2.5%, the thermal efficiency increases by 0.5% and the overall efficiency decreases by 2%. Also, the results show that the thermal output power of the photovoltaic thermal system varies between 280 and 460 Watts and the electrical output power varies between 120 and 190 Watts throughout the year.

کلیدواژه‌ها [English]

  • Solar Energy
  • Thermal Photovoltaic System
  • Energy and Exergy Analysis
[1]        Martinez-Rodriguez, C. (2021). A Markov Chain Model for COVID19 in Mexico City. arXiv preprint arXiv: 2110, 13816, 1-21.
[2]        Boskabadi, M., & Doostparast, M. (2020). Modeling and data mining of global data on patients with COVID-19. Iranian Journal of Emergency Medicine, 7(1), 1-40.
[3]        Gralinski, L. E., & Menachery, V. D. (2020). Return of the Coronavirus: 2019-nCo Viruses. Viruses, 12(2), 135, (2020).
[4]        Wilson, M. E., & Chen, L. H. (2020). Travellers give wings to novel coronavirus (2019-nCoV). Journal of travel medicine, 27(2), 15.
[5]        Parsamanesh, M., & Erfanian, M. (2020). Global dynamics of a mathematical model for propagation of infection diseases with saturated incidence rate. Journal of Advanced Mathematical Modeling (JAMM), 11(1), 69-81.
[6]        Niksirat, M., & Nasseri, S. H. (2021). Forecasting of the number of cases and deaths due to corona disease using neuro-fuzzy networks. Journal of decisions and operations research, 5(4), 414-425.
[7]        Ross, R. (1910). The prevention of malaria. Dutton, 669.
[8]        Kermack, W. O., & Mckendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London Series A: Containing Papers of a Mathematical and Physical Character, 115(772), 700-721.
[9]        Yaesoubi, R., & Ted, C. (2011). Generalized Markov models of infectious disease spread: A novel framework for developing dynamic health policies. European journal of operational research, 215(3), 679-687.
[10]      Overton, C. E., Stage, H. B., Ahmad, S., Curran-Sebastian, J., Dark, P., Das, R., Fearon, E., Felton, T., Fyles, M., Gent, N., & Hall, I. (2020). Using statistics and mathematical modelling to understand infectious disease outbreaks: COVID-19 as an example. Infectious Disease Modelling, 5, 409-441.
[11]      Romeu, J. L. (2020). A markov chain model for covid-19 survival analysis. PhD, Syracuse University. https://www. researchgate. net/profile/Jorge–Romeu.
[12]      Achmad, A., Mahrudinda, M., & Ruchjana, B. (2021). Stationary Distribution Markov Chain for COVID-19 Pandemic. International Journal of Global Operations Research, 1(2), 71-74.
[13]      Akay, H., & Barbastathis, G. (2020). Markovian random walk modeling and visualization of the epidemic spread of Covid-19. medRxiv, 2020-04.
[14]      Dehghan Shabani, Z., & Shahnazi, R. (2020). Spatial distribution dynamics and prediction of COVID‐19 in Asian countries: Spatial Markov chain approach. Regional Science Policy and Practice, 12(6), 1005-1025.
[15]      Parsamanesh, M., Erfanian, M., & Mehrshad, S. (2020). Stability and bifurcations in a discrete-time epidemic model with vaccination and vital dynamics. BMC bioinformatics, 21, 1-15.
[16]      Twumasi, C., Asiedu, L., & Ezekiel, N. (2019). Statistical modeling of HIV, tuberculosis, and hepatitis b transmission in Ghana. Canadian journal of infectious disease and medical microbiology, 1-8.
[17]      Parsamanesh, M., & Erfanian, M. (2021). Stability and bifurcations in a discrete-time SIVS model with saturated incidence rate. Chaos, Solitons & Fractals, 150, 111178.
[18]      Billinton, R., & Allan, R. N. (1992). Reliability evaluation of engineering systems. Plenum press, New York, 280.
[19]      Ajdar, F. (2018). Estimation of transition probabilities in Markov chains. Journal of Research in Science, Engineering and Technology, 6(4), 12-18.
[20]      Tavanpour, N., Ghaemi, A. A., Honar, T., & Shirvani, A. (2018). Investigation the Occurrence Probability and Persistence of Rainy Days by Using Markov Chain Model (Case Study: Lamerd City). Iran-Water Resources Research, 14(2), 1-11.
[21]      Parsamanesh, M., Erfanian, M., & Akrami, A. (2021). Modeling of the propagation of infectious diseases: mathematics and population. EBNESINA, 22(4),
60-74.
[22]      Miller, S., & Childers, D. (2012). Probability and random processes: With applications to signal processing and communications. Academic Press, 593.
[23]      FPHS. (2021). www.santepubliquefrance.fr/dossiers/coronavirus-covid-19, French Public Health Service, available in September 2021.
[24]      Worldometers. (2021). https://www.worldometers.info/coronavirus/country, available in September 2021.
[25]      IRNA. (2022). Niger is the Land that Covid-19 Forgot, The Islamic Republic News Agency, Code: 84409080. https://www.irna.ir/news/84409080.